论文标题
随机几何形状中的双重统一电路
Dual unitary circuits in random geometries
论文作者
论文摘要
最近引入的双统一砖回路被认为是范式可溶解的量子混沌多体系统,具有可调性的奇特性和混合度。在这里,我们表明,电路晶格的规律性对于精确的溶解性至关重要。我们考虑一个电路,其中随机2 Quit双重单位门位于直线上的直线随机排列的交叉点(Mikado)(Mikado),并在分析上计算地方运算符的时空相关函数的方差。请注意,由于大门的局部HAAR随机性,平均相关器消失了。结果可以进行两个随机的Mikado设置的身体动机。第一个对应于带有内部Qubit自由度的自由颗粒的热状态,这些粒子在运动学交叉处经历相互作用,而第二个则表示旋转对称(随机欧几里得)时空。
Recently introduced dual unitary brickwork circuits have been recognised as paradigmatic exactly solvable quantum chaotic many-body systems with tunable degree of ergodicity and mixing. Here we show that regularity of the circuit lattice is not crucial for exact solvability. We consider a circuit where random 2-qubit dual unitary gates sit at intersections of random arrangements of straight lines in two dimensions (mikado) and analytically compute the variance of the spatio-temporal correlation function of local operators. Note that the average correlator vanishes due to local Haar randomness of the gates. The result can be physically motivated for two random mikado settings. The first corresponds to the thermal state of free particles carrying internal qubit degrees of freedom which experience interaction at kinematic crossings, while the second represents rotationally symmetric (random euclidean) space-time.