论文标题

通过回归预测的超出概率预测明显的波高预测

Exceedance Probability Forecasting via Regression for Significant Wave Height Prediction

论文作者

Cerqueira, Vitor, Torgo, Luis

论文摘要

大量波高预测是海洋数据分析中的关键问题。这项任务会影响几个海事行动,例如管理船舶通过或估计波浪能量产生。在这项工作中,我们专注于可能导致沿海灾难的明显波高度的极端值的预测。此任务被构建为超出概率预测问题。因此,我们旨在估计明显的波高度将超过预定义的临界阈值的概率。通常使用概率二进制分类模型或预测集合来解决此问题。相反,我们提出了一种基于点预测的新方法。计算这两种类型的预测(二进制概率和点预测)对于决策者来说都是有用的。虽然概率的二进制预测简化了最终用户有关超级事件的信息,但该点的预测可以为即将到来的未来动态提供更多见解。提出的解决方案的过程通过假设点预测遵循的分布,其位置参数等于该预测。然后,我们使用累积分布函数将这些点的预测转换为超级概率估计。我们使用位于加拿大哈利法克斯海岸的智能浮标的数据进行了实验。结果表明,提出的方法比超出概率预测的最先进方法要好。

Significant wave height forecasting is a key problem in ocean data analytics. This task affects several maritime operations, such as managing the passage of vessels or estimating the energy production from waves. In this work, we focus on the prediction of extreme values of significant wave height that can cause coastal disasters. This task is framed as an exceedance probability forecasting problem. Accordingly, we aim to estimate the probability that the significant wave height will exceed a predefined critical threshold. This problem is usually solved using a probabilistic binary classification model or an ensemble of forecasts. Instead, we propose a novel approach based on point forecasting. Computing both type of forecasts (binary probabilities and point forecasts) can be useful for decision-makers. While a probabilistic binary forecast streamlines information for end-users concerning exceedance events, the point forecasts can provide additional insights into the upcoming future dynamics. The procedure of the proposed solution works by assuming that the point forecasts follow a distribution with the location parameter equal to that forecast. Then, we convert these point forecasts into exceedance probability estimates using the cumulative distribution function. We carried out experiments using data from a smart buoy placed on the coast of Halifax, Canada. The results suggest that the proposed methodology is better than state-of-the-art approaches for exceedance probability forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源