论文标题

量子 - 光学学习通道歧视

Quantum-machine-learning channel discrimination

论文作者

Kardashin, Andrey, Vlasova, Anna, Pervishko, Anastasiia, Yudin, Dmitry, Biamonte, Jacob

论文摘要

在量子通道歧视的问题中,人们区分给定数量的量子通道,这是通过通过通道发送输入状态并测量输出状态来完成的。这项工作研究了跨量子电路和机器学习技术的应用,用于区分此类渠道。特别是,我们探讨了(i)将此任务嵌入到变化量子计算的框架中的实际实施,(ii)培训基于变异量子电路的量子分类器,以及(iii)应用量子内核估计技术。为了测试这三种通道歧视方法,我们考虑了一对纠缠的通道和具有两个不同去极化因子的去极化通道。对于方法(i),我们使用广泛讨论的平行和顺序策略来解决解决量子通道歧视问题。我们在更好地收敛与量量较少的量子资源方面展示了后者的优势。具有变分量子分类器(II)的量子通道歧视,即使使用随机和混合输入状态以及简单的变分路,也可以操作。基于内核的分类方法(III)也被发现有效,因为它允许人们区分不仅与去极化因子的固定值相关的去极化通道,而是与其范围相关的。此外,我们发现对一种常用核之一的简单修改显着提高了这种方法的效率。最后,我们的数值发现表明,通道歧视的变分方法的性能取决于输出态乘积的轨迹。这些发现表明,量子机学习可用于区分通道,例如代表物理噪声过程的通道。

In the problem of quantum channel discrimination, one distinguishes between a given number of quantum channels, which is done by sending an input state through a channel and measuring the output state. This work studies applications of variational quantum circuits and machine learning techniques for discriminating such channels. In particular, we explore (i) the practical implementation of embedding this task into the framework of variational quantum computing, (ii) training a quantum classifier based on variational quantum circuits, and (iii) applying the quantum kernel estimation technique. For testing these three channel discrimination approaches, we considered a pair of entanglement-breaking channels and the depolarizing channel with two different depolarization factors. For the approach (i), we address solving the quantum channel discrimination problem using widely discussed parallel and sequential strategies. We show the advantage of the latter in terms of better convergence with less quantum resources. Quantum channel discrimination with a variational quantum classifier (ii) allows one to operate even with random and mixed input states and simple variational circuits. The kernel-based classification approach (iii) is also found effective as it allows one to discriminate depolarizing channels associated not with just fixed values of the depolarization factor, but with ranges of it. Additionally, we discovered that a simple modification of one of the commonly used kernels significantly increases the efficiency of this approach. Finally, our numerical findings reveal that the performance of variational methods of channel discrimination depends on the trace of the product of the output states. These findings demonstrate that quantum machine learning can be used to discriminate channels, such as those representing physical noise processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源