论文标题
一个完整的度量空间,没有非平凡的可分离Lipschitz缩回
A complete metric space without non-trivial separable Lipschitz retracts
论文作者
论文摘要
我们构建了一个完整的度量空间$ m $的基数连续性,以使每个非辛格尔顿的封闭式可分开的子集的$ m $都无法成为$ m $的Lipschitz缩回。这为Banach空间的各种经典和最新示例提供了一个度量类似,这些空间未能线性补充的较小密度特征的子空间。
We construct a complete metric space $M$ of cardinality continuum such that every non-singleton closed separable subset of $M$ fails to be a Lipschitz retract of $M$. This provides a metric analogue to the various classical and recent examples of Banach spaces failing to have linearly complemented subspaces of prescribed smaller density character.