论文标题
与保形场理论的纠缠光谱的热校正
Thermal Correction to Entanglement Spectrum for Conformal Field Theories
论文作者
论文摘要
我们将热校正计算为纠缠频谱,以分离二维形成式磁场理论的单个间隔。我们的派生是将热校正到Rényi熵的直接扩展。在低温膨胀中,仅包括在热密度矩阵中的第一个激发态,我们在小区间和大间隔限制下对纠缠频谱进行热校正的分析结果。我们发现温度校正会减少纠缠谱中的大特征值,而增加纠缠频谱中的小特征值,从而导致纠缠频谱的整体交叉变化模式。至关重要的是,在低温极限下,热校正由第一个激发态支配,并取决于其缩放尺寸$δ$和退化$ g $。这为通过热纠缠频谱提取基本共形数据的通用信息开放了一条途径。所有这些分析计算都使用1+1维自由费用来支持数值模拟。最后,我们将计算扩展到将热校正解析为对称分解的纠缠谱。
We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension $Δ$ and degeneracy $g$. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum.