论文标题
在$α_s$提取中删除Demix Quark和Gluon Jets的主题
Going off topics to demix quark and gluon jets in $α_S$ extractions
论文作者
论文摘要
量子染色体动力学是夸克与胶子之间强烈相互作用的理论。交互的耦合强度,$α_s$,是自然界所有相互作用中最不明显的。从喷气机内的辐射模式中提取强耦合将为从喷气生产速率和HADRONIC事件形状中提取常规提取的方法提供补充方法,并且将是大型强子碰撞器(LHC)中喷气子结构的关键成就。目前,样品中夸克和gluon喷气机的相对分数是此类提取的限制因素,因为对于最精心理解的可观察到的,该部分的含量为$α_s$的值。为了克服这一限制,我们将最近提出的技术应用于统计上降低喷气机的多种混合物,并根据操作定义获得纯化的夸克和gluon分布。我们说明,研究夸克和Gluon Jet子结构可以显着提高强耦合的这种提取的敏感性。我们还讨论使用机器学习技术或红外线和共线 - 不安全信息如何改善混合性能而不会丧失理论控制。虽然需要理论研究将提取物主题与横截面计算中的夸克和gluon对象联系起来,但我们的研究说明了降低LHC中Jet子结构的$α_s$提取的主要不确定性的潜力。
Quantum chromodynamics is the theory of the strong interaction between quarks and gluons; the coupling strength of the interaction, $α_S$, is the least precisely-known of all interactions in nature. An extraction of the strong coupling from the radiation pattern within jets would provide a complementary approach to conventional extractions from jet production rates and hadronic event shapes, and would be a key achievement of jet substructure at the Large Hadron Collider (LHC). Presently, the relative fraction of quark and gluon jets in a sample is the limiting factor in such extractions, as this fraction is degenerate with the value of $α_S$ for the most well-understood observables. To overcome this limitation, we apply recently proposed techniques to statistically demix multiple mixtures of jets and obtain purified quark and gluon distributions based on an operational definition. We illustrate that studying quark and gluon jet substructure separately can significantly improve the sensitivity of such extractions of the strong coupling. We also discuss how using machine learning techniques or infrared- and collinear-unsafe information can improve the demixing performance without the loss of theoretical control. While theoretical research is required to connect the extract topics with the quark and gluon objects in cross section calculations, our study illustrates the potential of demixing to reduce the dominant uncertainty for the $α_S$ extraction from jet substructure at the LHC.