论文标题

广义分析功能的奇异性分层降低

Stratified Reduction of Singularities of Generalized Analytic Functions

论文作者

Molina-Samper, B., Palma-Márquez, J., Sanz-Sánchez, F.

论文摘要

超过广义分析歧管的广义分析功能是由具有非负实体指数的收敛真实功率序列的总和(以及支持下的某些顺序良好的条件)构建。在Martín-Villaverde,Rolin和Sanz-Sánchez的一篇论文中,这是由于局部减少此类功能的局部减少的结果。在本文中,我们处理了全球问题的第一种方法。也就是说,我们证明,具有封闭中心的吹吹动的有限序列可以转化为广义分析函数的细菌,该函数相对于定义了歧管边界的坐标(正常交叉分裂)。

Generalized analytic functions over generalized analytic manifolds are build from sums of convergent real power series with non-negative real exponents (and some well-ordering condition on the support). In a paper by Martín-Villaverde, Rolin and Sanz-Sánchez it is established a result of local reduction of singularities for such a functions. In this paper we deal with a first approach of the global problem. Namely, we prove that a germ of generalized analytic function can be transformed by a finite sequence of blowing-ups with closed centers into a function which is locally of monomial type with respect to the coordinates defining the boundary of the manifold (a normal crossings divisor).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源