论文标题
晶状体限制的玻尔兹曼机器分区功能的复制品分析
Replica analysis of the lattice-gas Restricted Boltzmann Machine partition function
论文作者
论文摘要
我们研究了复制与对称的ANSATZ内的大型二元 - 二元格式限制的二元晶格 - 限制性玻尔兹曼机器(RBMS)的对数的预期值,平均涉及RBM Hamiltonian参数所代表的疾病。在哈密顿参数上平均是通过对角线协方差矩阵完成的。由于参数协方差矩阵的对角线形式未保留在RBM的ising和晶格 - 气体形式之间的同构中,因此与通常研究的Ising rbm形式相比,我们发现了晶状体GAS RBM的淬火对数分区函数的行为差异。我们在热力学极限中获得了每个节点的晶状体-GAS RBM对数分区函数的期望和方差的明确表达式。我们还获得了针对每个节点的预期对数分区函数的领先阶有限尺寸校正的明确表达式,以及复制元素对称近似稳定性的阈值。我们表明,在热力学极限中,复制对称近似的稳定性阈值等于与近期消息通话算法的稳定性阈值,用于构建与RBM自由能的平均斑点近似值。鉴于复制对称性假设随着自旋旋转耦合的障碍水平的增加而分解,因此,我们从控制该疾病的方差方面获得了渐近扩张,对于复制对称对称对数分区函数和复制 - 对称的稳定性稳定性阈值。我们确认使用仿真得出的各种结果。
We study the expectation value of the logarithm of the partition function of large binary-to-binary lattice-gas Restricted Boltzmann Machines (RBMs) within a replica-symmetric ansatz, averaging over the disorder represented by the parameters of the RBM Hamiltonian. Averaging over the Hamiltonian parameters is done with a diagonal covariance matrix. Due to the diagonal form of the parameter covariance matrix not being preserved under the isomorphism between the Ising and lattice-gas forms of the RBM, we find differences in the behaviour of the quenched log partition function of the lattice-gas RBM compared to that of the Ising RBM form usually studied. We obtain explicit expressions for the expectation and variance of the lattice-gas RBM log partition function per node in the thermodynamic limit. We also obtain explicit expressions for the leading order finite size correction to the expected log partition function per node, and the threshold for the stability of the replica-symmetric approximation. We show that the stability threshold of the replica-symmetric approximation is equivalent, in the thermodynamic limit, to the stability threshold of a recent message-passing algorithm used to construct a mean-field Bethe approximation to the RBM free energy. Given the replica-symmetry assumption breaks down as the level of disorder in the spin-spin couplings increases, we obtain asymptotic expansions, in terms of the variance controlling this disorder, for the replica-symmetric log partition function and the replica-symmetric stability threshold. We confirm the various results derived using simulation.