论文标题

一个用于控制的嵌入式功能选择框架

An Embedded Feature Selection Framework for Control

论文作者

Wei, Jiawen, Wang, Fangyuan, Zeng, Wanxin, Lin, Wenwei, Gui, Ning

论文摘要

在保持最佳控制性能的同时减少传感器要求对于许多工业控制应用至关重要,以实现强大的,低成本和计算有效的控制器。但是,对于典型的机器学习域的现有特征选择解决方案几乎不可能通过变化的动态来控制在控制领域。在本文中,一个新颖的框架,即双世界嵌入的细心特征选择(D-AFS),可以有效地为动态控制下的系统选择最相关的传感器。 D-AFS并没有在大多数深度增强学习(DRL)算法中使用的一个世界,而是具有扭曲特征的现实世界和虚拟同行。通过在两个世界中分析DRL的响应,D-AFS可以定量确定各自特征对控制的重要性。众所周知的主动流控制问题,圆柱阻力减少,用于评估。结果表明,D-AFS成功地发现了比最先进的解决方案的优化五探针布局,比人类专家的五探针布局比最先进的解决方案进行了18.7 \%的阻力。我们还将该解决方案应用于四个OpenAI经典控制案例。在所有情况下,D-AFS都具有与最初提供的解决方案相同或更好的传感器配置。我们认为,结果突出显示了为实验或工业系统实现高效,最佳传感器设计的一种新方法。我们的源代码可在https://github.com/g-yab/dafsfluid上公开提供。

Reducing sensor requirements while keeping optimal control performance is crucial to many industrial control applications to achieve robust, low-cost, and computation-efficient controllers. However, existing feature selection solutions for the typical machine learning domain can hardly be applied in the domain of control with changing dynamics. In this paper, a novel framework, namely the Dual-world embedded Attentive Feature Selection (D-AFS), can efficiently select the most relevant sensors for the system under dynamic control. Rather than the one world used in most Deep Reinforcement Learning (DRL) algorithms, D-AFS has both the real world and its virtual peer with twisted features. By analyzing the DRL's response in two worlds, D-AFS can quantitatively identify respective features' importance towards control. A well-known active flow control problem, cylinder drag reduction, is used for evaluation. Results show that D-AFS successfully finds an optimized five-probes layout with 18.7\% drag reduction than the state-of-the-art solution with 151 probes and 49.2\% reduction than five-probes layout by human experts. We also apply this solution to four OpenAI classical control cases. In all cases, D-AFS achieves the same or better sensor configurations than originally provided solutions. Results highlight, we argued, a new way to achieve efficient and optimal sensor designs for experimental or industrial systems. Our source codes are made publicly available at https://github.com/G-AILab/DAFSFluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源