论文标题

OpenXai:朝着模型解释进行透明评估

OpenXAI: Towards a Transparent Evaluation of Model Explanations

论文作者

Agarwal, Chirag, Ley, Dan, Krishna, Satyapriya, Saxena, Eshika, Pawelczyk, Martin, Johnson, Nari, Puri, Isha, Zitnik, Marinka, Lakkaraju, Himabindu

论文摘要

尽管最近的文献已经提出了几种类型的事后解释方法,但系统地基准这些方法的工作很少。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组成组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预先培训的模型和最先进的特征归因方法的集合,以及(ii)开放式源代码实现,用于评估忠诚度,稳定性(稳健性)的质量数量的e量化元素的开放式实现,并说明了稳定性(稳健性),并构成了稳定性(良好的方法),以实现范围,并构成稳定性的方法。各种指标,模型和数据集的方法。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准测试这些方法的透明度和可重复性。虽然第一个版本的OpenXAI仅支持表格数据集,但我们认为的说明方法和指标足以适用于其他数据模式。 OpenXAI数据集和模型,最先进的解释方法的实现和评估指标,在此GitHub链接中公开可用。

While several types of post hoc explanation methods have been proposed in recent literature, there is very little work on systematically benchmarking these methods. Here, we introduce OpenXAI, a comprehensive and extensible open-source framework for evaluating and benchmarking post hoc explanation methods. OpenXAI comprises of the following key components: (i) a flexible synthetic data generator and a collection of diverse real-world datasets, pre-trained models, and state-of-the-art feature attribution methods, and (ii) open-source implementations of eleven quantitative metrics for evaluating faithfulness, stability (robustness), and fairness of explanation methods, in turn providing comparisons of several explanation methods across a wide variety of metrics, models, and datasets. OpenXAI is easily extensible, as users can readily evaluate custom explanation methods and incorporate them into our leaderboards. Overall, OpenXAI provides an automated end-to-end pipeline that not only simplifies and standardizes the evaluation of post hoc explanation methods, but also promotes transparency and reproducibility in benchmarking these methods. While the first release of OpenXAI supports only tabular datasets, the explanation methods and metrics that we consider are general enough to be applicable to other data modalities. OpenXAI datasets and models, implementations of state-of-the-art explanation methods and evaluation metrics, are publicly available at this GitHub link.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源