论文标题
混合系统的多面体Lyapunov函数的反例引导的计算
Counterexample-guided computation of polyhedral Lyapunov functions for hybrid systems
论文作者
论文摘要
本文提出了一种反例引导的迭代算法,以计算凸,分段线性(多面体)Lyapunov功能,以实现不确定的连续时间线性杂交系统。多面体Lyapunov函数为常用多项式Lyapunov函数提供了替代方案。我们的方法首先表征了多面体Lyapunov函数的内在特性,包括其“偏心率”和“鲁棒性”。然后,我们得出一种算法,该算法要么计算多面体lyapunov函数,以证明系统是稳定的,要么得出结论,没有多面体lyapunov函数存在其偏心和鲁棒性参数满足某些用户提供的限制。值得注意的是,我们的方法对构成所需的多面体Lyapunov函数的线性零件数量没有任何先验界限。 该算法在学习步骤和验证步骤之间交替,始终保持有限的证人国家。学习步骤解决了线性程序,以计算候选人Lyapunov功能与有限的证人状态兼容。在验证步骤中,我们的方法验证了候选Lyapunov函数是否是系统的有效lyapunov函数。如果验证失败,我们将获得新的证人。我们证明了对算法所需的最大迭代次数的理论结合。我们演示了该算法在数值示例上的适用性。
This paper presents a counterexample-guided iterative algorithm to compute convex, piecewise linear (polyhedral) Lyapunov functions for uncertain continuous-time linear hybrid systems. Polyhedral Lyapunov functions provide an alternative to commonly used polynomial Lyapunov functions. Our approach first characterizes intrinsic properties of a polyhedral Lyapunov function including its "eccentricity" and "robustness" to perturbations. We then derive an algorithm that either computes a polyhedral Lyapunov function proving that the system is stable, or concludes that no polyhedral Lyapunov function exists whose eccentricity and robustness parameters satisfy some user-provided limits. Significantly, our approach places no a priori bounds on the number of linear pieces that make up the desired polyhedral Lyapunov function. The algorithm alternates between a learning step and a verification step, always maintaining a finite set of witness states. The learning step solves a linear program to compute a candidate Lyapunov function compatible with a finite set of witness states. In the verification step, our approach verifies whether the candidate Lyapunov function is a valid Lyapunov function for the system. If verification fails, we obtain a new witness. We prove a theoretical bound on the maximum number of iterations needed by our algorithm. We demonstrate the applicability of the algorithm on numerical examples.