论文标题
玩量子问题阶段的非本地游戏
Playing nonlocal games with phases of quantum matter
论文作者
论文摘要
奇偶校验游戏是一个非本地游戏的一个例子:通过在玩此游戏之前共享一个Greenberger-Horne-Zeilinger(GHz)状态,玩家可以以比古典物理学允许的更高概率获胜。 $ n $ Qubits的GHz状态也是$ N $ QUBITS上的铁磁量子ISING模型的基态状态,其量消失了较弱的量子波动。在这一观察结果的推动下,我们研究了具有共享通用量子iSing模型基底状态的$ n $播放器的可能性,该模型表现出非散发量子的波动,仍然使用针对GHz状态优化的协议赢得了奇偶校验游戏。我们的主要结果是一个修改的平价游戏,该协议在量子模型的铁磁阶段中渐近地表现出量子优势。我们进一步证明,确切可溶的$ d = 1+1 $横向景观模型的基态可以在更广泛的区域上为平等游戏提供量子优势,其中包括整个铁磁阶段,临界点,临界点和一部分。相比之下,我们发现了物质的拓扑阶段和对称性保护拓扑(SPT)阶段的例子,即旋律代码hamiltonian的解义阶段和$ \ Mathbb {z} _2 \ times \ times \ times \ atmathbb {z} _2 _2 _2 $ spt阶段_2 $ spt阶段在单一的固定范围中,与肛门的优势相比,这是不相同的。
The parity game is an example of a nonlocal game: by sharing a Greenberger-Horne-Zeilinger (GHZ) state before playing this game, the players can win with a higher probability than is allowed by classical physics. The GHZ state of $N$ qubits is also the ground state of the ferromagnetic quantum Ising model on $N$ qubits in the limit of vanishingly weak quantum fluctuations. Motivated by this observation, we examine the probability that $N$ players who share the ground state of a generic quantum Ising model, which exhibits non-vanishing quantum fluctuations, still win the parity game using the protocol optimized for the GHZ state. Our main result is a modified parity game for which this protocol asymptotically exhibits quantum advantage in precisely the ferromagnetic phase of the quantum Ising model. We further prove that the ground state of the exactly soluble $d=1+1$ transverse-field Ising model can provide a quantum advantage for the parity game over an even wider region, which includes the entire ferromagnetic phase, the critical point and part of the paramagnetic phase. By contrast, we find examples of topological phases and symmetry-protected topological (SPT) phases of matter, namely the deconfined phase of the toric code Hamiltonian and the $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase in one dimension, that do not exhibit an analogous quantum advantage away from their fixed points.