论文标题

基于视觉和触觉的连续多式联运意图和注意力识别,以识别更安全的身体互动

Vision- and tactile-based continuous multimodal intention and attention recognition for safer physical human-robot interaction

论文作者

Wong, Christopher Yee, Vergez, Lucas, Suleiman, Wael

论文摘要

在机器人上采用皮肤样触觉传感器,通过增加检测人类接触的能力来增强协作机器人的安全性和可用性。不幸的是,单独的简单二元触觉传感器无法确定人类接触的背景 - 无论是故意的互动还是需要安全操作的意外碰撞。许多已发表的方法使用更高级的触觉传感器或分析联合扭矩对离散相互作用进行了分类。取而代之的是,我们建议通过添加机器人安装的相机进行人体姿势分析来增强简单二进制触觉传感器的意图识别能力。不同的相互作用特征,包括触摸位置,人姿势和凝视方向,用于训练监督的机器学习算法,以对触摸是有意的,而F1得分为86%。我们证明,多模式意图识别比通过协作机器人百特的单域分析要准确得多。此外,我们的方法还可以通过凝视来衡量用户的注意力来连续监视在故意或无意间之间流动变化的相互作用。如果用户停止在中任务中注意注意力,则建议的意图和注意力识别算法可以激活安全功能,以防止不安全的互动。我们还采用了一种功能还原技术,该技术将投入数量减少到五个,以实现更概括的低维分类器。这种简化既减少了所需的培训数据量,又提高了现实世界的分类精度。它还将可能不可知的方法与机器人和触摸传感器体系结构相同,同时实现高度的任务适应性。

Employing skin-like tactile sensors on robots enhances both the safety and usability of collaborative robots by adding the capability to detect human contact. Unfortunately, simple binary tactile sensors alone cannot determine the context of the human contact -- whether it is a deliberate interaction or an unintended collision that requires safety manoeuvres. Many published methods classify discrete interactions using more advanced tactile sensors or by analysing joint torques. Instead, we propose to augment the intention recognition capabilities of simple binary tactile sensors by adding a robot-mounted camera for human posture analysis. Different interaction characteristics, including touch location, human pose, and gaze direction, are used to train a supervised machine learning algorithm to classify whether a touch is intentional or not with an F1-score of 86%. We demonstrate that multimodal intention recognition is significantly more accurate than monomodal analyses with the collaborative robot Baxter. Furthermore, our method can also continuously monitor interactions that fluidly change between intentional or unintentional by gauging the user's attention through gaze. If a user stops paying attention mid-task, the proposed intention and attention recognition algorithm can activate safety features to prevent unsafe interactions. We also employ a feature reduction technique that reduces the number of inputs to five to achieve a more generalized low-dimensional classifier. This simplification both reduces the amount of training data required and improves real-world classification accuracy. It also renders the method potentially agnostic to the robot and touch sensor architectures while achieving a high degree of task adaptability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源