论文标题
稳定的稳固,均匀间隔的行星系统的稳定寿命,质量不等
Stable lifetime of compact, evenly-spaced planetary systems with non-equal masses
论文作者
论文摘要
具有两个以上行星的紧凑型行星系统可以从行星驱动力进行轨道穿越。在没有轨道交叉的情况下,系统保持稳定的时间具有指数的依赖性,对互相半径单位的初始轨道分离。但是,当多行星系统的周期比接近均值共振时,其稳定性时间与行星分离确定的时间不同。当系统设置具有相等的周期比的链条时,该差异可以达到数量级。我们使用数值模拟来描述具有相等分离的非谐振系统中的稳定时间关系,但非等量质量会破坏相等的时期比率的链。我们发现,在地球质量行星的质量中,偏差为30%,在稳定时间关系可以预测给定间距的平均稳定性时间的时期比率上产生了足够大的偏差。从相等时期比率抹除的结构随着行星质量的增加而增加,但不取决于行星多样性的质量偏差。在足够大的质量偏差的情况下,在给定间距上的稳定时间的分布比在同期由于周期不相同而变窄的同等质量系统中要宽得多。我们发现稳定性时间分布与间距是异质的 - 稳定时间的偏差随着所述间距增加。
Compact planetary systems with more than two planets can undergo orbital crossings from planet-planet perturbations. The time which the system remains stable without orbital crossings has an exponential dependence on the initial orbital separations in units of mutual Hill radii. However when a multi-planet system has period ratios near mean-motion resonances, its stability time differs from the time determined by planet separation. This difference can be up to an order of magnitude when systems are set up with chains of equal period ratios. We use numerical simulations to describe the stability time relationship in non-resonant systems with equal separations but non-equal masses which breaks the chains of equal period ratios. We find a deviation of 30 per cent in the masses of Earth-mass planets creates a large enough deviation in the period ratios where the average stability time of a given spacing can be predicted by the stability time relationship. The mass deviation where structure from equal period ratios is erased increases with planet mass but does not depend on planet multiplicity. With a large enough mass deviation, the distribution of stability time at a given spacing is much wider than in equal-mass systems where the distribution narrows due to period commensurabilities. We find the stability time distribution is heteroscedastic with spacing -- the deviation in stability time for a given spacing increases with said spacing.