论文标题
Gorenstein二元性和通用系数定理
Gorenstein Duality and Universal Coefficient Theorems
论文作者
论文摘要
本文描述了具有Gorenstein Rings特征的共同体学理论的双重现象。对于用度为0的P-local整数的结缔组织理论,以及系数环r_*shift 0的gorenstein,这指出,对于x进行x*(x)扭转,我们有r^*(x)=σ^a hom(r _**(r _*(x),z/p^{\ infty})。还证明了在交换性戈伦斯坦环光谱上的模块的相应陈述。 [对最后一个版本的次要印刷和书目更改。]
The paper describes a duality phenomenon for cohomology theories with the character of Gorenstein rings. For a connective cohomology theory with the p-local integers in degree 0, and coefficient ring R_* Gorenstein of shift 0, this states that for X with R_*(X) torsion, we have R^*(X)=Σ^a Hom( R_*(X), Z/p^{\infty}). A corresponding statement for modules over a commutative Gorenstein ring spectrum is also proved. [Minor typographical and bibliographic changes to the last version.]