论文标题
马尔可夫场模型:缩放分子动力学方法
Markov Field Models: scaling molecular kinetics approaches to large molecular machines
论文作者
论文摘要
随着结构生物学的最新进展,包括实验技术和深度学习的高精度结构预测,需要扩展到大型生物分子系统的分子动力学方法。分子动力学建模的当前最新方法集中于编码分子系统的全局构型作为不同的状态。该范式命令我们绘制它们之间所有可能的结构和样本过渡,这对于大规模系统(例如生物分子复合物)变得不可能。为了达到可扩展的分子模型,我们建议从全球状态描述转变为一组耦合模型,这些模型都描述了分子系统的局部域或位点的动力学。我们描述了当前最新的全球马尔可夫建模方法中的局限性,然后将马尔可夫田地模型引入了一个伞术语,其中包括来自各种科学社区的模型,包括独立的马尔可夫分解,伊辛和Potts模型,以及(动态)图形模型,并评估它们用于计算分子生物学的使用。最后,我们给出了一些早期采用这些想法的例子,以建模分子动力学和热力学。
With recent advances in structural biology, including experimental techniques and deep learning-enabled high-precision structure predictions, molecular dynamics methods that scale up to large biomolecular systems are required. Current state-of-the-art approaches in molecular dynamics modeling focus on encoding global configurations of molecular systems as distinct states. This paradigm commands us to map out all possible structures and sample transitions between them, a task that becomes impossible for large-scale systems such as biomolecular complexes. To arrive at scalable molecular models, we suggest moving away from global state descriptions to a set of coupled models that each describe the dynamics of local domains or sites of the molecular system. We describe limitations in the current state-of-the-art global-state Markovian modeling approaches and then introduce Markov Field Models as an umbrella term that includes models from various scientific communities, including Independent Markov Decomposition, Ising and Potts Models, and (Dynamic) Graphical Models, and evaluate their use for computational molecular biology. Finally, we give a few examples of early adoptions of these ideas for modeling molecular kinetics and thermodynamics.