论文标题
非阿布莱恩和$ \ varepsilon $ curved同源代数与箭头类别
Non-abelian and $\varepsilon$-curved homological algebra with arrow categories
论文作者
论文摘要
格兰迪斯(Grandis)的非亚伯同源代数将阿贝尔类别类别的标准同源代数概括为\ textit {同源类别},这是更广泛的类别类别,包括例如晶格和galois连接类别。在这里,我们证明,如果$ \ mathsf {c} $是任何具有无效形态的类别,那么(co)内核存在,那么$ \ mathsf {c} $的箭头类别是同源类别。这大大扩大了Grandis框架的适用性。特别是,可以将同源物体作为$ \ \ m rathsf {c} $的形态学来形成$ \ mathsf {c} $中链复合物的同源性,这可以将其视为从循环对象到链的对象modulo边界的地图。 Grandis原始框架不适用的一种情况是\ textit {$ \ varepsilon $ -curved同源代数}。这是指规范空间的链复合物,其差分正方形仅在零的位置,从某种意义上说,$ \ | d^2 \ | | \ leq \ varepsilon $对于某些$ \ varepsilon> 0 $。例如,在群体的近似表示理论中,这很重要,在该理论中,Kazhdan成功地采用了$ \ varepsilon $ curved的同源技术。我们开发了$ \ varepsilon $ curved同源代数的一些基础知识,并注意到我们对箭头类别的结果有助于Grandis理论的应用。
Grandis's non-abelian homological algebra generalizes standard homological algebra in abelian categories to \textit{homological categories}, which are a broader class of categories including for example the category of lattices and Galois connections. Here, we prove that if $\mathsf{C}$ is any category with an ideal of null morphisms with respect to which (co)kernels exist, then the arrow category of $\mathsf{C}$ is a homological category. This broadens the applicability of Grandis's framework substantially. In particular, one can form the homology of chain complexes in $\mathsf{C}$ by taking the homology objects to be morphisms of $\mathsf{C}$, which one may think of as maps from an object of cycles to an object of chains modulo boundaries. One situation to which Grandis's original framework does not apply is \textit{$\varepsilon$-curved homological algebra}. This refers to chain complexes of normed spaces whose differential squares to zero only approximately, in the sense that $\|d^2\| \leq \varepsilon$ for some $\varepsilon > 0$. This is relevant for example in the theory of approximate representations of groups, where Kazhdan has successfully employed $\varepsilon$-curved homological techniques in an ad-hoc manner. We develop some basics of $\varepsilon$-curved homological algebra and note that our result on arrow categories facilitates the application of Grandis's theory.