论文标题

使用端到端框架优化双向部分AUC

Optimizing Two-way Partial AUC with an End-to-end Framework

论文作者

Yang, Zhiyong, Xu, Qianqian, Bao, Shilong, He, Yuan, Cao, Xiaochun, Huang, Qingming

论文摘要

ROC曲线(AUC)下的面积是机器学习的关键指标,它评估了所有可能的真实正率(TPR)和假阳性率(FPR)的平均性能。基于知道熟练的分类器应同时接受高的TPR和低FPR的知识,我们转向研究一个更通用的变体,称为双向部分AUC(TPAUC),其中只有$ \ Mathsf {tpr} \ gegeα,\ mathsf {fpr} \leβ$包含在该区域中。此外,最近的工作表明,TPAUC与现有的部分AUC指标基本上不一致,在该指标中,只有FPR范围才受到限制,这为寻求解决方案提供了一个新问题来利用高TPAUC。在此激励的情况下,我们在本文中提出了优化该新指标的第一个试验。本课程的关键挑战在于难以通过端到端随机训练进行基于梯度的优化,即使选择替代损失也是如此。为了解决这个问题,我们提出了一个通用框架来构建替代优化问题,该问题支持有效的端到端培训,并深入学习。此外,我们的理论分析表明:1)替代问题的目标函数将在轻度条件下实现原始问题的上限,2)优化替代问题会导致TPAUC的良好概括性能,而TPAUC具有很高的可能性。最后,对几个基准数据集的经验研究表达了我们框架的功效。

The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge that a skillful classifier should simultaneously embrace a high TPR and a low FPR, we turn to study a more general variant called Two-way Partial AUC (TPAUC), where only the region with $\mathsf{TPR} \ge α, \mathsf{FPR} \le β$ is included in the area. Moreover, recent work shows that the TPAUC is essentially inconsistent with the existing Partial AUC metrics where only the FPR range is restricted, opening a new problem to seek solutions to leverage high TPAUC. Motivated by this, we present the first trial in this paper to optimize this new metric. The critical challenge along this course lies in the difficulty of performing gradient-based optimization with end-to-end stochastic training, even with a proper choice of surrogate loss. To address this issue, we propose a generic framework to construct surrogate optimization problems, which supports efficient end-to-end training with deep learning. Moreover, our theoretical analyses show that: 1) the objective function of the surrogate problems will achieve an upper bound of the original problem under mild conditions, and 2) optimizing the surrogate problems leads to good generalization performance in terms of TPAUC with a high probability. Finally, empirical studies over several benchmark datasets speak to the efficacy of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源