论文标题
贝叶斯圆形晶格过滤器,用于计算有效估计多变量自回归模型
Bayesian Circular Lattice Filters for Computationally Efficient Estimation of Multivariate Time-Varying Autoregressive Models
论文作者
论文摘要
非组织时间序列数据存在于各种科学学科中,包括环境科学,生物学,信号处理,计量经济学等。已经开发了许多贝叶斯模型来处理非组织时间序列。随时间变化的矢量自回旋(TV-VAR)模型是多元非组织时间序列的完善模型。然而,在大多数情况下,模型呈现的大量参数会导致较高的计算负担,最终限制了其使用情况。本文提出了一种计算高效的多元贝叶斯圆形晶格过滤器,以将电视VAR模型的使用扩展到更广泛的高维问题。我们的完全贝叶斯框架可以随着时间的流逝而允许自回归(AR)系数和创新协方差。我们的估计方法基于贝叶斯晶格过滤器(BLF),该晶格过滤器(BLF)在单变量的情况下非常有效且稳定。为了说明我们方法的有效性,我们通过模拟研究进行了全面的比较与其他竞争方法,并发现在大多数情况下,我们的方法在估计的和真实的时变频谱密度之间的平均平方误差方面表现出色。最后,我们通过应用于季度国内生产总值(GDP)数据和北加州风数据来证明我们的方法。
Nonstationary time series data exist in various scientific disciplines, including environmental science, biology, signal processing, econometrics, among others. Many Bayesian models have been developed to handle nonstationary time series. The time-varying vector autoregressive (TV-VAR) model is a well-established model for multivariate nonstationary time series. Nevertheless, in most cases, the large number of parameters presented by the model results in a high computational burden, ultimately limiting its usage. This paper proposes a computationally efficient multivariate Bayesian Circular Lattice Filter to extend the usage of the TV-VAR model to a broader class of high-dimensional problems. Our fully Bayesian framework allows both the autoregressive (AR) coefficients and innovation covariance to vary over time. Our estimation method is based on the Bayesian lattice filter (BLF), which is extremely computationally efficient and stable in univariate cases. To illustrate the effectiveness of our approach, we conduct a comprehensive comparison with other competing methods through simulation studies and find that, in most cases, our approach performs superior in terms of average squared error between the estimated and true time-varying spectral density. Finally, we demonstrate our methodology through applications to quarterly Gross Domestic Product (GDP) data and Northern California wind data.