论文标题
歌剧:协调面向任务的对话和信息寻求经验
OPERA: Harmonizing Task-Oriented Dialogs and Information Seeking Experience
论文作者
论文摘要
对话式AI中的现有研究主要将面向任务的对话框(TOD)和问题答案(QA)视为单独的任务。为了构建可以完成用户任务并支持信息寻求信息的对话代理的目标,重要的是要构建一个可以通过访问各种外部知识来处理TOD和QA的系统。在这项工作中,我们提出了一项新任务,开放式TOD(OB-TOD),将TOD与QA任务相结合,并将外部知识源扩展到包括明确的知识源(例如Web)和隐性知识源(例如,预训练的语言模型)。我们创建了一个新的数据集ob-multiwoz,在这里,我们在其中丰富了Tod会议,并使用类似QA的信息来寻求基于外部知识的经验。我们提出了一个统一的模型Opera(开放式末端到端任务对话框),该歌剧可以适当地访问明确和隐式的外部知识,以解决定义的任务。实验结果表明,与闭环基线相比,Opera的表现出色,并说明了两种知识类型的价值。
Existing studies in conversational AI mostly treat task-oriented dialog (TOD) and question answering (QA) as separate tasks. Towards the goal of constructing a conversational agent that can complete user tasks and support information seeking, it is important to build a system that handles both TOD and QA with access to various external knowledge. In this work, we propose a new task, Open-Book TOD (OB-TOD), which combines TOD with QA task and expand external knowledge sources to include both explicit knowledge sources (e.g., the Web) and implicit knowledge sources (e.g., pre-trained language models). We create a new dataset OB-MultiWOZ, where we enrich TOD sessions with QA-like information seeking experience grounded on external knowledge. We propose a unified model OPERA (Open-book End-to-end Task-oriented Dialog) which can appropriately access explicit and implicit external knowledge to tackle the defined task. Experimental results demonstrate OPERA's superior performance compared to closed-book baselines and illustrate the value of both knowledge types.