论文标题

有限的范围外推,并进行定量界限和应用

Limited range extrapolation with quantitative bounds and applications

论文作者

Cao, Mingming, Liu, Honghai, Si, Zengyan, Yabuta, Kôzô

论文摘要

近年来,由于Hytönen解决了$ A_2 $的猜想,急剧或定量的加权不平等引起了极大的关注。进步极大地改善了对古典对象(例如Calderón-Zygmund操作员)的概念理解。但是,大量运营商不适合Calderón-Zygmund运营商的类别,并且未能在所有$ l^p(w)$ spaces上限制为$ p \ in(1,\ infty)$和a_p $中的$ w \ $ w \。在本文中,我们以定量界限开发了卢比奥·德·弗朗西亚(Rubio de Francia)外推,以研究(多线)Calderón-Zygmund理论以外的运营商的定量加权不平等。我们主要建立一个定量的多线性限制范围推断,以指数为$ p_i \ in(\ mathfrak {p} _i^ - ,\ mathfrak {p} _i^+)$和权重$ w_i^{p_i^{p_i} { rh _ {(\ Mathfrak {p} _i^+/p_i)'} $,$ i = 1,\ ldots,m $,它是Cruz-uribe和Martell的结果。我们还提出了从多线性操作员到相应换向器的推断。此外,我们的结果是定量的,使我们能够将Banach空间设置中的特殊定量估计值扩展到准浴缸空间设置。我们的证明是基于定量界限的非对抗外推结果。最后,我们提出了各种应用,以说明外推的实用性,通过集中于某些典型的多线性操作员的定量加权估计值,例如双线性bochner-riesz含义,双线性粗糙的奇异积分和多线性傅立叶多级。在线性案例中,基于Littlewood-Paley理论,我们包括加权跳跃和粗糙奇异积分的变化不平等。

In recent years, sharp or quantitative weighted inequalities have attracted considerable attention on account of $A_2$ conjecture solved by Hytönen. Advances have greatly improved conceptual understanding of classical objects such as Calderón-Zygmund operators. However, plenty of operators do not fit into the class of Calderón-Zygmund operators and fail to be bounded on all $L^p(w)$ spaces for $p \in (1, \infty)$ and $w \in A_p$. In this paper we develop Rubio de Francia extrapolation with quantitative bounds to investigate quantitative weighted inequalities for operators beyond the (multilinear) Calderón-Zygmund theory. We mainly establish a quantitative multilinear limited range extrapolation in terms of exponents $p_i \in (\mathfrak{p}_i^-, \mathfrak{p}_i^+)$ and weights $w_i^{p_i} \in A_{p_i/\mathfrak{p}_i^-} \cap RH_{(\mathfrak{p}_i^+/p_i)'}$, $i=1, \ldots, m$, which refines a result of Cruz-Uribe and Martell. We also present an extrapolation from multilinear operators to the corresponding commutators. Additionally, our result is quantitative and allows us to extend special quantitative estimates in the Banach space setting to the quasi-Banach space setting. Our proof is based on an off-diagonal extrapolation result with quantitative bounds. Finally, we present various applications to illustrate the utility of extrapolation by concentrating on quantitative weighted estimates for some typical multilinear operators such as bilinear Bochner-Riesz means, bilinear rough singular integrals, and multilinear Fourier multipliers. In the linear case, based on the Littlewood-Paley theory, we include weighted jump and variational inequalities for rough singular integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源