论文标题

部分可观测时空混沌系统的无模型预测

On the distribution of polynomials having a given number of irreducible factors over finite fields

论文作者

Datta, Arghya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $q\geqslant 2$ be a fixed prime power. We prove an asymptotic formula for counting the number of monic polynomials that are of degree $n$ and have exactly $k$ irreducible factors over the finite field $\mathbb{F}_q$. We also compare our results with the analogous existing ones in the integer case, where one studies all the natural numbers up to $x$ with exactly $k$ prime factors. In particular, we show that the number of monic polynomials grows at a surprisingly higher rate when $k$ is a little larger than $\log n$ than what one would speculate from looking at the integer case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源