论文标题

Schur-Siegel-Smyth痕迹问题的矩阵类似物

A Matrix Analogue of Schur-Siegel-Smyth Trace Problem

论文作者

Chaudhury, Srijonee Shabnam

论文摘要

Let $\mathcal{S}$ be the set of all positive-definite, symmetrizable integer matrices with non-zero upper and lower diagonal and $\mathcal{T}$ to be the set of all positive-definite real symmetric matrices with nonzero upper diagonal such that all non-zero entries are square-roots of some positive integers and the matrices satisfy a certain cycle 健康)状况。 在本文中,对于任何$ n \ times n $矩阵$ a \ in \ mathcal {s} \ cup \ mathcal {t} $和任何$ k \ in \ sathbb {n} $ in \ mathbb {n} $,我们找到一个通用下限,以$ tr_ {2^k}(2^k}(a)$,即以及其他一些变量。特别是,我们以$ tr_2(a)$为$ 6n-5 $获得最佳的下限。作为此结果的很大结果,我们表明$ \叠加{tr_2(a)} = \ frac {tr_2(a)} {n} $的最小极限点是$ 6 $。这是``schur -siegel -siegel -smyth跟踪问题的''的解决方案,用于$ \ nathcal {s} \ cup \ cup \ mathcal {t} $中的矩阵多项式。矩阵。

Let $\mathcal{S}$ be the set of all positive-definite, symmetrizable integer matrices with non-zero upper and lower diagonal and $\mathcal{T}$ to be the set of all positive-definite real symmetric matrices with nonzero upper diagonal such that all non-zero entries are square-roots of some positive integers and the matrices satisfy a certain cycle condition. In this paper, for any $n \times n$ matrix $A \in \mathcal{S} \cup \mathcal{T}$ and any $k \in \mathbb{N}$ we find a general lower bound for $Tr_{2^k}(A)$, i.e, the sum of $2^k$-th power of eigenvalues of $A$, which depends on $n$ as well as some other variables. In particular, we obtain the best possible lower bound for $Tr_2(A) $ that is $6n - 5$. As a strong outcome of this result we show that the smallest limit point of $\overline{Tr_2(A)} = \frac{Tr_2(A)}{n}$ is $6$. This is a solution of an analogue of ``Schur - Siegel - Smyth trace problem" for characteristic polynomials of matrices in $\mathcal{S} \cup \mathcal{T}$. We also obtain a lower bound of smallest limit point of $\overline{Tr_{2^k}(A)}$ for any positive integer $k > 1$ and for the same set of matrices. Furthermore, we exhibit that the famous results of Smyth on density of absolute trace measure and absolute trace-2 measure of totally positive integers are also true for the set of symmetric integer connected positive definite matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源