论文标题
相对论效应和原子核中的三体相互作用
Relativistic effects and three-body interactions in atomic nuclei
论文作者
论文摘要
基于领先的协变量无性促进有效场理论,通过代表具有对称性的基于对称性的人工神经网络的核多体波函数,使用$ a \ le 4 $ nuclei的变异蒙特卡洛方法得出和解决了相对论的核哈密顿量。发现相对论效应挽救了该理论的可重学性,并克服了$^3 $ h和$^4 $ He的能量崩溃问题,而没有提倡令人反感的三核互动,如非同性主义计算中的领先顺序。然而,为了准确地重现实验基态能量,需要进行三核子的相互作用,并且其与相对论效应的相互作用起着至关重要的作用。强烈排斥的相对论效应抑制了三核子相互作用给出的能量贡献,因此需要需要三核子相互作用的强度才能重现实验能。这些结果阐明了对原子核中相对论效应和三体相互作用的一致理解。
Based on the leading-order covariant pionless effective field theory, a relativistic nuclear Hamiltonian is derived and solved using the variational Monte Carlo approach for $A\le 4$ nuclei by representing the nuclear many-body wave functions with a symmetry-based artificial neural network. It is found that the relativistic effects rescue the renormalizability of the theory, and overcome the energy collapse problem for $^3$H and $^4$He without promoting a repulsive three-nucleon interaction to leading order as in nonrelativistic calculations. Nevertheless, to exactly reproduce the experimental ground-state energies, a three-nucleon interaction is needed and its interplay with the relativistic effects plays a crucial role. The strongly repulsive relativistic effects suppress the energy contribution given by the three-nucleon interactions, so a strong strength for the three-nucleon interaction could be required to reproduce the experimental energies. These results shed light on a consistent understanding of relativistic effects and three-body interactions in atomic nuclei.