论文标题

深度学习与回归:数据的预测有限的数据

Deep-Learning vs Regression: Prediction of Tourism Flow with Limited Data

论文作者

Lemmel, Julian, Babaiee, Zahra, Kleinlehner, Marvin, Majic, Ivan, Neubauer, Philipp, Scholz, Johannes, Grosu, Radu, Neubauer, Sophie A.

论文摘要

21世纪的现代旅游面临着许多挑战。这些挑战之一是太空有限地区的游客数量迅速增长,例如历史城市中心,博物馆或地理瓶颈,例如狭窄的山谷。在这种情况下,对特定领域内的旅游量和旅游流程的正确准确预测对于游客管理任务,例如游客流量控制和预防人满为患至关重要。静态流量控制方法,例如限制对热点或使用常规低级控制器的访问,无法解决问题。在本文中,我们通过使用旅游区域提供的可用粒状数据,并将结果与​​经典的统计方法Arima进行比较,并通过使用有限的数据来评估访客流量预测领域的几种最先进方法的性能。我们的结果表明,与Arima方法相比,深度学习模型可以产生更好的预测,同时均具有更快的推理时间和能够结合其他输入功能。

Modern tourism in the 21st century is facing numerous challenges. One of these challenges is the rapidly growing number of tourists in space limited regions such as historical city centers, museums or geographical bottlenecks like narrow valleys. In this context, a proper and accurate prediction of tourism volume and tourism flow within a certain area is important and critical for visitor management tasks such as visitor flow control and prevention of overcrowding. Static flow control methods like limiting access to hotspots or using conventional low level controllers could not solve the problem yet. In this paper, we empirically evaluate the performance of several state-of-the-art deep-learning methods in the field of visitor flow prediction with limited data by using available granular data supplied by a tourism region and comparing the results to ARIMA, a classical statistical method. Our results show that deep-learning models yield better predictions compared to the ARIMA method, while both featuring faster inference times and being able to incorporate additional input features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源