论文标题

安全,基于学习的MPC在车道变化不确定性下用于高速公路驾驶:一种分配强大的方法

Safe, Learning-Based MPC for Highway Driving under Lane-Change Uncertainty: A Distributionally Robust Approach

论文作者

Schuurmans, Mathijs, Katriniok, Alexander, Meissen, Christopher, Tseng, H. Eric, Patrinos, Panagiotis

论文摘要

我们提出了一项案例研究,该案例研究将基于学习的分配强大的模型预测控制对高速公路运动计划的随机不确定性,对周围道路使用者的车道变化行为进行了策划。道路使用者的动态是使用马尔可夫跳跃系统建模的,其中开关变量描述了所考虑的车辆所需的车道,并且连续状态描述了车辆的姿势和速度。我们假设下面马尔可夫链的开关概率是未知的。当观察到车辆时,从马尔可夫链中绘制了来自马尔可夫链的样本,因此估计了过渡概率以及歧义集,该集合构成了这些概率的误解。相应地,在场景树上提出了分布强大的最佳控制问题,并在退化的地平线上解决。结果,获得了运动计划程序,该程序通过观察目标车辆逐渐变得越来越保守,同时避免了从小样本量获得的估计中过度自信。我们提出了广泛的数值案例研究,比较了几个不同设计方面对控制器性能和安全性的影响。

We present a case study applying learning-based distributionally robust model predictive control to highway motion planning under stochastic uncertainty of the lane change behavior of surrounding road users. The dynamics of road users are modelled using Markov jump systems, in which the switching variable describes the desired lane of the vehicle under consideration and the continuous state describes the pose and velocity of the vehicles. We assume the switching probabilities of the underlying Markov chain to be unknown. As the vehicle is observed and thus, samples from the Markov chain are drawn, the transition probabilities are estimated along with an ambiguity set which accounts for misestimations of these probabilities. Correspondingly, a distributionally robust optimal control problem is formulated over a scenario tree, and solved in receding horizon. As a result, a motion planning procedure is obtained which through observation of the target vehicle gradually becomes less conservative while avoiding overconfidence in estimates obtained from small sample sizes. We present an extensive numerical case study, comparing the effects of several different design aspects on the controller performance and safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源