论文标题

Destripe:一个自我2自己的时空光谱图神经网络,带有未展开的Hessian用于灯页面显微镜中的条纹伪影

DeStripe: A Self2Self Spatio-Spectral Graph Neural Network with Unfolded Hessian for Stripe Artifact Removal in Light-sheet Microscopy

论文作者

Liu, Yu, Weiss, Kurt, Navab, Nassir, Marr, Carsten, Huisken, Jan, Peng, Tingying

论文摘要

浅层荧光显微镜(LSFM)是一种尖端的体积成像技术,可允许对具有脱钩照明和检测路径的介量样品进行三维成像。尽管这种显微镜的选择性激发方案提供了固有的光学截面,可最大程度地减少聚焦荧光背景和样品光损伤,但它容易吸收光吸收和散射效应,从而导致图像中的照明和剥离伪像不利。为了解决这个问题,在本文中,我们在LSFM中提出了一种称为Destripe的盲条形伪像去除算法,该算法将自我观察的时空图形神经网络与展开的Hessian Prior结合在一起。具体而言,受到傅立叶变换的理想特性,将条带信息凝结到频域中的孤立值中,Destripe首先通过利用单向性条纹伪像和更多的同位素前景图像之间的结构差异,从而将潜在损坏的傅立叶系数定位。然后可以将受影响的傅立叶系数送入图形神经网络中以恢复,并在海上正规化中展开,以进一步确保标准图像空间中的结构得到很好的保存。由于在现实,无条纹的LSFM几乎没有标准图像采集协议中,Destripe配备了一个自我2的自发性损失术语,可以消除伪像,而无需访问无条纹的地面真相图像。竞争性实验结果表明,毁灭性的效力在通过合成和真实条纹伪像恢复了LSFM中损坏的生物标志物的功效。

Light-sheet fluorescence microscopy (LSFM) is a cutting-edge volumetric imaging technique that allows for three-dimensional imaging of mesoscopic samples with decoupled illumination and detection paths. Although the selective excitation scheme of such a microscope provides intrinsic optical sectioning that minimizes out-of-focus fluorescence background and sample photodamage, it is prone to light absorption and scattering effects, which results in uneven illumination and striping artifacts in the images adversely. To tackle this issue, in this paper, we propose a blind stripe artifact removal algorithm in LSFM, called DeStripe, which combines a self-supervised spatio-spectral graph neural network with unfolded Hessian prior. Specifically, inspired by the desirable properties of Fourier transform in condensing striping information into isolated values in the frequency domain, DeStripe firstly localizes the potentially corrupted Fourier coefficients by exploiting the structural difference between unidirectional stripe artifacts and more isotropic foreground images. Affected Fourier coefficients can then be fed into a graph neural network for recovery, with a Hessian regularization unrolled to further ensure structures in the standard image space are well preserved. Since in realistic, stripe-free LSFM barely exists with a standard image acquisition protocol, DeStripe is equipped with a Self2Self denoising loss term, enabling artifact elimination without access to stripe-free ground truth images. Competitive experimental results demonstrate the efficacy of DeStripe in recovering corrupted biomarkers in LSFM with both synthetic and real stripe artifacts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源