论文标题
人类运动描述和综合的程序化概念学习
Programmatic Concept Learning for Human Motion Description and Synthesis
论文作者
论文摘要
我们介绍了程序化运动概念,这是人类行为的层次运动表示形式,可捕获低级运动和高级描述作为运动概念。这种表示可以使人类运动描述,交互式编辑以及单个框架内新型视频序列的受控合成。我们提出了一个体系结构,该体系结构以半监督的方式从配对的视频和动作序列中学习此概念表示。我们代表的紧凑性还使我们能够提出一个低资源的培训配方,以进行数据效率学习。通过胜过确定的基线,尤其是在小型数据制度中,我们证明了我们框架对多个应用程序的效率和有效性。
We introduce Programmatic Motion Concepts, a hierarchical motion representation for human actions that captures both low-level motion and high-level description as motion concepts. This representation enables human motion description, interactive editing, and controlled synthesis of novel video sequences within a single framework. We present an architecture that learns this concept representation from paired video and action sequences in a semi-supervised manner. The compactness of our representation also allows us to present a low-resource training recipe for data-efficient learning. By outperforming established baselines, especially in the small data regime, we demonstrate the efficiency and effectiveness of our framework for multiple applications.