论文标题
治疗非绝热动力学中的几何相效应
Treating geometric phase effects in nonadiabatic dynamics
论文作者
论文摘要
我们提出了一种在存在几何相效应的情况下消除非绝热动力学中衍生耦合的量规自由的方法。这种方法依赖于动态变量的功能的自下而上的量子量子,这可以在给定的糖尿病基础上与对哈密顿量的真实和虚构值的贡献相关。通过最大程度地减少假想函数与常数的偏差,我们确定了一组绝热基础,这些绝型底座恢复了常用于拓扑幻想系统的实值计。然而,这种最小化也限制了拓扑非琐事的情况下的量规自由,为在几何相效应下打开了寻找规格不变衍生耦合的途径。对于遍及单个避免的横断的核波袋的最少交换表面跳跃计算,提出了令人鼓舞的结果,为此发现了完全规范的衍生耦合。
We present an approach for eliminating the gauge freedom for derivative couplings in nonadiabatic dynamics in the presence of geometric phase effects. This approach relies on a bottom-up construction of a parametric quantum Hamiltonian in terms of functions of a dynamical variable, which can be associated with real and imaginary-valued contributions to the Hamiltonian in a given diabatic basis. By minimizing the deviation of the imaginary functions from a constant we identify a set of diabatic bases that recover the real-valued gauge commonly used for topologically-trivial systems. This minimization, however, also confines the gauge freedom in the topologically-nontrivial case, opening a path towards finding gauge-invariant derivative couplings under geometric phase effects. Encouraging results are presented for fewest-switches surface hopping calculations of a nuclear wavepacket traversing a single avoided crossing, for which fully gauge-invariant derivative couplings are found.