论文标题

结构的可定义和不可定决的概念

Definable and Non-definable Notions of Structure

论文作者

Swan, Andrew W.

论文摘要

可确定性是Grothendieck振动理论中的一个关键概念,该理论表征了何时可以从振动基础的内部逻辑中访问对象的外部特性。在本文中,我们考虑了从对象的属性到对象上的结构的确定性的概括,舒尔曼以局部表示的名称介绍。 我们首先发展了一些一般理论,并展示了如何由于Bénabou和Johnstone作为特殊案例而恢复现有观念。我们给出了几个示例,介绍了o结构,重点是代数弱分解系统,它们可以自然地视为在代码域纤维上的结构概念。关于确定性,我们给出了足够的标准,可以定义,以确定的AWF,从而概括了立方体集的宇宙的结构,但还包含一些非常不同的外观示例,这些示例在内部意义上不满意,指数型函数具有正确的相邻。我们的非确定性示例包括在简单集中识别为间隔对象的逻辑原理和贝泽姆 - 斑点 - 穆伯立方体集合,这足以显示对KAN纤维的某些定义的定义。

Definability is a key notion in the theory of Grothendieck fibrations that characterises when an external property of objects can be accessed from within the internal logic of the base of a fibration. In this paper we consider a generalisation of definability from properties of objects to structures on objects, introduced by Shulman under the name local representability. We first develop some general theory and show how to recover existing notions due to Bénabou and Johnstone as special cases. We give several examples of definable and non definable notions o structure, focusing on algebraic weak factorisation systems, which can be naturally viewed as notions of structure on codomain fibrations. Regarding definability, we give a sufficient criterion for cofibrantly generated awfs's to be definable, generalising a construction of the universe for cubical sets, but also including some very different looking examples that do not satisfy tininess in the internal sense, that exponential functors have a right adjoint. Our examples of non definability include the identification of logical principles holding for the interval objects in simplicial sets and Bezem-Coquand-Huber cubical sets that suffice to show a certain definition of Kan fibration is not definable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源