论文标题
离散事件物理人类机器人相互作用的非自愿稳定
Involuntary Stabilization in Discrete-Event Physical Human-Robot Interaction
论文作者
论文摘要
人类不仅将机器人用作工具,而且还用作与人类的交互协助和合作,从而形成了人类机器人的互动。在这些相互作用中,反馈循环会导致不稳定的力相互作用,在这种情况下,力量升级使人类面临危险。先前的研究已经分析了自愿相互作用的稳定性,但在相互作用中忽略了非自愿行为。与先前的研究相反,本研究考虑了非自愿行为:人类的力量繁殖偏见是离散事件的人类机器人相互作用。我们基于数学偏置模型得出了渐近稳定性条件,发现偏差稳定了远离隐式平衡点的人的隐式平衡点,并破坏了该点附近的点。偏置模型,与隐式平衡点的相互作用的收敛性以及该点周围的分歧通过使用三种不同的身体部位的三种相互作用的行为实验来验证:手指,手腕和脚。我们的结果表明,人类与他们的非自愿行为隐含地确保了自己与机器人之间的稳定和密切的关系。
Robots are used by humans not only as tools but also to interactively assist and cooperate with humans, thereby forming physical human-robot interactions. In these interactions, there is a risk that a feedback loop causes unstable force interaction, in which force escalation exposes a human to danger. Previous studies have analyzed the stability of voluntary interaction but have neglected involuntary behavior in the interaction. In contrast to the previous studies, this study considered the involuntary behavior: a human's force reproduction bias for discrete-event human-robot force interaction. We derived an asymptotic stability condition based on a mathematical bias model and found that the bias asymptotically stabilizes a human's implicit equilibrium point far from the implicit equilibrium point and destabilizes the point near the point. The bias model, convergence of the interaction toward the implicit equilibrium point, and divergence around the point were consistently verified via behavioral experiments under three kinds of interactions using three different body parts: a hand finger, wrist, and foot. Our results imply that humans implicitly secure a stable and close relationship between themselves and robots with their involuntary behavior.