论文标题

伪Radio-Signal合成的生成对抗网络

Generative Adversarial Networks for Pseudo-Radio-Signal Synthesis

论文作者

Chaker, Haythem, Hamouda, Soumaya, Michailow, Nicola

论文摘要

对于许多无线通信应用,迫切需要无线电信号与通道效果结合使用的流量模型。尽管分析模型用于捕获这些现象,但现实世界中的非线性效应(例如设备响应,干扰,扭曲,噪声),尤其是这些效果的组合可能很难被这些模型捕获。这仅仅是由于它们的复杂性和自由程度可能很难以紧凑的表达方式显性。在本文中,我们提出了一种更无模型的方法,可以使用软件定义的无线电平台共同近似端到端的黑盒无线通信方案,并优化以有效合成随后类似的“伪拉迪奥信号”。更确切地说,我们实现了一种基于生成的对抗网络的解决方案,该解决方案会在特定方案中自动从记录的原型中学习无线电属性。这允许高度表达自由。数值结果表明,原型的交通模式与通道效应共同学习,而无需引入有关场景或简化参数模型的假设。

For many wireless communication applications, traffic pattern modeling of radio signals combined with channel effects is much needed. While analytical models are used to capture these phenomena, real world non-linear effects (e.g. device responses, interferences, distortions, noise) and especially the combination of such effects can be difficult to capture by these models. This is simply due to their complexity and degrees of freedom which can be hard to explicitize in compact expressions. In this paper, we propose a more model-free approach to jointly approximate an end-to-end black-boxed wireless communication scenario using software-defined radio platforms and optimize for an efficient synthesis of subsequently similar 'pseudo-radio-signals'. More precisely, we implement a generative adversarial network based solution that automatically learns radio properties from recorded prototypes in specific scenarios. This allows for a high degree of expressive freedom. Numerical results show that the prototypes' traffic patterns jointly with channel effects are learned without the introduction of assumptions about the scenario or the simplification to a parametric model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源