论文标题
具有二次汉密尔顿的骨质场的量子liouvillian特殊和恶魔般的点:海森伯格 - 拉格文鸟方程方法
Quantum Liouvillian exceptional and diabolical points for bosonic fields with quadratic Hamiltonians: The Heisenberg-Langevin equation approach
论文作者
论文摘要
使用Heisenberg-Langevin方程的解决方案和操作员矩的相应方程讨论了确定开放量子系统的特征频率的等效方法。分析了一种简单的阻尼两级原子,以证明两种方法的等效性。建议的方法用于揭示相应运动方程的动力学矩阵的结构以及特征,及其对相互作用的乳头模式的脱生性。对于两种模式的情况,明确讨论了量子liouvillian的特殊和恶魔般的及其变性点。观察到量子杂种毒死的特殊点(遗传,真实和诱导)和隐藏的特殊点,这些点未直接在振幅光谱中识别。通过Heisenberg-Langevin方程式提出的方法为无限尺寸开放量子系统中量子异常和恶魔点的详细分析铺平了一般方法。
Equivalent approaches to determine eigenfrequencies of the Liouvillians of open quantum systems are discussed using the solution of the Heisenberg-Langevin equations and the corresponding equations for operator moments. A simple damped two-level atom is analyzed to demonstrate the equivalence of both approaches. The suggested method is used to reveal the structure as well as eigenfrequencies of the dynamics matrices of the corresponding equations of motion and their degeneracies for interacting bosonic modes described by general quadratic Hamiltonians. Quantum Liouvillian exceptional and diabolical points and their degeneracies are explicitly discussed for the case of two modes. Quantum hybrid diabolical exceptional points (inherited, genuine, and induced) and hidden exceptional points, which are not recognized directly in amplitude spectra, are observed. The presented approach via the Heisenberg-Langevin equations paves the general way to a detailed analysis of quantum exceptional and diabolical points in infinitely dimensional open quantum systems.