论文标题

通过本地pohožaev身份构建无限的许多解决方案,以实现关键的choquard方程

Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities

论文作者

Gao, Fashun, Moroz, Vitaly, Yang, Minbo, Zhao, Shunneng

论文摘要

在本文中,我们研究了具有轴对称电势的一类关键ch虫方程, $$ -ΔU+ v(| x'|,x'')u = \ big(| x |^{ - 4} \ ast | u |^{2} \ big) $$ 其中$(x',x'')\ in \ mathbb {r}^2 \ times \ times \ mathbb {r}^{4} $,$ v(| x'|,x''')$是$ \ mathbb {r}^{r}^{r}^{+times \ times \ mathbb =卷积。在强壮的小木 - 贝布尔特不等式的意义上,该方程至关重要。通过应用有限的尺寸缩小参数并开发新的本地pohožaev身份,我们证明,如果函数$ r^2v(r,x'''')$具有拓扑上的非平凡临界点,那么问题就可以接受无限的许多解决方案,该解决方案具有任意大能量。

In this paper, we study a class of the critical Choquard equations with axisymmetric potentials, $$ -Δu+ V(|x'|,x'')u =\Big(|x|^{-4}\ast |u|^{2}\Big)u\hspace{4.14mm}\mbox{in}\hspace{1.14mm} \mathbb{R}^6, $$ where $(x',x'')\in \mathbb{R}^2\times\mathbb{R}^{4}$, $V(|x'|, x'')$ is a bounded nonnegative function in $\mathbb{R}^{+}\times\mathbb{R}^{4}$, and $*$ stands for the standard convolution. The equation is critical in the sense of the Hardy-Littlewood-Sobolev inequality. By applying a finite dimensional reduction argument and developing novel local Pohožaev identities, we prove that if the function $r^2V(r,x'')$ has a topologically nontrivial critical point then the problem admits infinitely many solutions with arbitrary large energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源