论文标题

代数群体的内态动力学

Dynamics of endomorphisms of algebraic groups

论文作者

Byszewski, Jakub, Cornelissen, Gunther, Houben, Marc

论文摘要

令$σ$表示有限场的代数关闭上平滑代数$ g $的内态性,并假设所有迭代$σ$都有许多固定点有限的。 Steinberg给出了$σ$的固定点数量(因此,其所有迭代的$σ^n $)在半神经案例中提供了公式,从而代表了其Artin-Mazur Zeta函数作为理性函数的表示。我们将其推广到任意(平滑)代数组$ g $,其中固定点的数量$σ_n$的$σ^n $可能取决于$ n $的$ p $ - adiC属性。我们通过“有限的变形”(FAD-)序列的概念来使序列$(σ_n)$的结构进行公理。这种序列也发生在拓扑动力学中,我们关于Zeta功能和轨道渐近计数的后续结果在这种情况下同样适用。例如,到$ s $ integer动态系统,添加剂蜂窝自动机和其他紧凑型阿伯利亚组。我们证明了相关的Artin-Mazur Zeta函数的二分法,并研究了质数定理的类似物,以计算长度$ \ leq n $的函数定期轨道。对于一个代数组$ g $,我们通过$ g $的$ \ ell $ - adiC同胞zeta函数表示错误项。

Let $σ$ denote an endomorphism of a smooth algebraic group $G$ over the algebraic closure of a finite field, and assume all iterates of $σ$ have finitely many fixed points. Steinberg gave a formula for the number of fixed points of $σ$ (and hence of all of its iterates $σ^n$) in the semisimple case, leading to a representation of its Artin-Mazur zeta function as a rational function. We generalise this to an arbitrary (smooth) algebraic group $G$, where the number of fixed points $σ_n$ of $σ^n$ can depend on $p$-adic properties of $n$. We axiomatise the structure of the sequence $(σ_n)$ via the concept of a `finite-adelically distorted' (FAD-)sequence. Such sequences also occur in topological dynamics, and our subsequent results about zeta functions and asymptotic counting of orbits apply equally well in that situation; for example, to $S$-integer dynamical systems, additive cellular automata and other compact abelian groups. We prove dichotomies for the associated Artin-Mazur zeta function, and study the analogue of the Prime Number Theorem for the function counting periodic orbits of length $\leq N$. For an algebraic group $G$ we express the error term via the $\ell$-adic cohomological zeta function of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源