论文标题

线性地图保留了$ 3 \ times 3 $矩阵的Lorentz频谱

Linear maps preserving the Lorentz spectrum of $3 \times 3$ matrices

论文作者

Bueno, M. I., Faktor, Ben, Kommerell, Rhea, Li, Runze, Veltri, Joey

论文摘要

对于给定的$ 3 \ times 3 $ 3 $真实矩阵$ a $,相对于Lorentz锥的特征值互补性问题包括找到一个实际数字$λ$和一个非零的矢量$ x \ in \ mathbb {r}^3 $由$ \ mathbb {r}^3 $组成的所有向量组成,形成$ 45^\ circ $或较小的角度,带有正$ z $ - 轴。我们将所有解决方案的集合$λ$都称为此特征值互补问题,为$ a $的Lorentz Spectrum。我们的工作涉及Lorentz Spectrum线性保存器在空间上的线性保存器的特征,即$ 3 $ 3 \ times 3 $ 3 $真实的矩阵,也就是说,线性地图$ ϕ:m_3 \ to m_3 $,使得lorentz spectra $ a $ a $ a $和$ ϕ(a)$相同。我们已经证明,所有此类线性保留器都采用$ ϕ(a)=(q \ oplus [1])a(q^t \ oplus [1])$的表格,其中$ q $是正交$ 2 \ times 2 $矩阵。

For a given $3 \times 3$ real matrix $A$, the eigenvalue complementarity problem relative to the Lorentz cone consists of finding a real number $λ$ and a nonzero vector $x \in \mathbb{R}^3$ such that $x^T(A-λI)x=0$ and both $x$ and $(A-λI)x$ lie in the Lorentz cone, which is comprised of all vectors in $\mathbb{R}^3$ forming a $45^\circ$ or smaller angle with the positive $z$-axis. We refer to the set of all solutions $λ$ to this eigenvalue complementarity problem as the Lorentz spectrum of $A$. Our work concerns the characterization of the linear preservers of the Lorentz spectrum on the space $M_3$ of $3 \times 3$ real matrices, that is, the linear maps $ϕ: M_3 \to M_3$ such that the Lorentz spectra of $A$ and $ϕ(A)$ are the same for all $A$. We have proven that all such linear preservers take the form $ϕ(A) = (Q \oplus [1])A(Q^T \oplus [1])$, where $Q$ is an orthogonal $2 \times 2$ matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源