论文标题
Speiser遇到了Misiurewicz
Speiser meets Misiurewicz
论文作者
论文摘要
我们提出了一个误导条件的概念,以实现整个功能的先验,并研究Speiser函数的扰动,以满足其参数空间(从Eremenko和Lyubich的意义上)。我们表明,每个误导可以通过相同参数空间中双曲线图近似整个函数。此外,如果双曲线图的朱莉娅集合的lebesgue测量为零,则误导性函数是双曲线图的lebesgue密度点。我们还证明,Misiurewicz Speiser函数的集合使Lebesgue在参数空间中测量零。
We propose a notion of Misiurewicz condition for transcendental entire functions and study perturbations of Speiser functions satisfying this condition in their parameter spaces (in the sense of Eremenko and Lyubich). We show that every Misiurewicz entire function can be approximated by hyperbolic maps in the same parameter space. Moreover, Misiurewicz functions are Lebesgue density points of hyperbolic maps if their Julia sets have zero Lebesgue measure. We also prove that the set of Misiurewicz Speiser functions has Lebesgue measure zero in the parameter space.