论文标题
临界费米表面的全息超导性
Holographic superconductivity of a critical Fermi surface
论文作者
论文摘要
我们从哈密顿量中得出全息超导性,该哈密顿量描述了在铁磁量子量点附近的二维电子的配对。在低能时,理论将lifshitz时空和动态缩放指数$ z = 3/2 $的四维重力描述映射到四维重力描述。弯曲的时空是由于临界正常状态的PowerLaw相关性。 Lifshitz各向异性是由费米表面附近的相位约束引起的。发现在Lifshitz空间和Eliashberg形式主义中获得的配对不稳定性是相同的。我们还为动态缩放指数的值$ 1 <z <\ infty $制定全息图。我们的结果提供了两个维度的全息相应的明确实现。
We derive holographic superconductivity from a Hamiltonian that describes pairing of two-dimensional electrons near a ferromagnetic quantum-critical point. At low energies the theory maps onto a four-dimensional gravity description with Lifshitz spacetime and dynamic scaling exponent $z=3/2$. The curved spacetime is due to powerlaw correlations of the critical normal state. The Lifshitz anisotropy is caused by phase-space constraints near the Fermi surface. The pairing instabilities obtained in Lifshitz space and from the Eliashberg formalism are found to be identical. We also formulate the holographic map for values of the dynamic scaling exponent $1<z<\infty$. Our result provides an explicit realization of the holographic correspondence in two dimensions.