论文标题

量子多参数估计的深度加固学习

Deep reinforcement learning for quantum multiparameter estimation

论文作者

Cimini, Valeria, Valeri, Mauro, Polino, Emanuele, Piacentini, Simone, Ceccarelli, Francesco, Corrielli, Giacomo, Spagnolo, Nicolò, Osellame, Roberto, Sciarrino, Fabio

论文摘要

物理量的估计是大多数科学研究的核心,量子设备的使用有望增强其性能。在实际情况下,认为资源是有限的,贝叶斯自适应估计代表了有效分配所有可用资源的有效方法,这是至关重要的。但是,该框架依赖于系统模型的精确知识,并以精细的校准检索,通常会在计算和实验上要求是要求。在这里,我们介绍了一种基于模型和深度学习的方法,以有效地实现实现所有相关挑战的现实贝叶斯量子计量任务,而无需依靠对系统的任何APRIORI知识。为了克服这一需求,直接在实验数据上训练神经网络,以学习多参数贝叶斯更新。然后,通过通过训练并增强研究量子传感器的实验启发式训练的增强学习算法提供的反馈来设置该系统的最佳工作点。值得注意的是,我们在实验上证明了比标准方法更高的估计性能实现,这证明了这两种黑盒算法在集成光子电路上的组合强度。这项工作是迈向完全基于人工智能的量子计量学的重要一步。

Estimation of physical quantities is at the core of most scientific research and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that the resources are limited and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration that often results computationally and experimentally demanding. Here, we introduce a model-free and deep learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a-priori knowledge on the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then, the system is set at its optimal working point through feedbacks provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. This work represents an important step towards fully artificial intelligence-based quantum metrology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源