论文标题
合作协调修改了差异演化,通过自动随机分组在嘈杂环境中基于距离的大规模优化问题进行基于距离的选择
Cooperative coevolutionary Modified Differential Evolution with Distance-based Selection for Large-Scale Optimization Problems in noisy environments through an automatic Random Grouping
论文作者
论文摘要
许多优化问题都遭受噪声的影响,基于非线性检查的分解方法(例如,差分组)将完全无法检测到乘法噪声环境中变量之间的相互作用,因此,在嘈杂的环境中很难在嘈杂的环境中分解大型优化问题(LSOPS)。在本文中,我们提出了一个自动随机分组(ARG),该分组不需要用户指定的任何明确的超参数。仿真实验和数学分析表明,ARG可以检测没有健身景观知识的变量之间的相互作用,而由ARG分解的子问题具有较小的量表,这对于EAS来说更容易优化。基于合作协同进化框架(CC)框架,我们引入了一个高级优化器,名为“修改差异进化”,其基于距离的选择(MDE-DS),以增强噪声环境中的搜索能力。与规范的DE相比,参数自我适应,多样化和强化之间的平衡以及基于距离的概率选择赋予了MDE-DS,具有更强的勘探和剥削能力。为了评估我们的提案的绩效,我们根据CEC2013 LSGO Suite设计了$ 500 $ -D和$ 1000 $ -D的问题。数值实验表明,我们的建议在嘈杂的环境中解决LSOP的前景广泛,并且很容易扩展到更高维度的问题。
Many optimization problems suffer from noise, and nonlinearity check-based decomposition methods (e.g. Differential Grouping) will completely fail to detect the interactions between variables in multiplicative noisy environments, thus, it is difficult to decompose the large-scale optimization problems (LSOPs) in noisy environments. In this paper, we propose an automatic Random Grouping (aRG), which does not need any explicit hyperparameter specified by users. Simulation experiments and mathematical analysis show that aRG can detect the interactions between variables without the fitness landscape knowledge, and the sub-problems decomposed by aRG have smaller scales, which is easier for EAs to optimize. Based on the cooperative coevolution (CC) framework, we introduce an advanced optimizer named Modified Differential Evolution with Distance-based Selection (MDE-DS) to enhance the search ability in noisy environments. Compared with canonical DE, the parameter self-adaptation, the balance between diversification and intensification, and the distance-based probability selection endow MDE-DS with stronger ability in exploration and exploitation. To evaluate the performance of our proposal, we design $500$-D and $1000$-D problems with various separability in noisy environments based on the CEC2013 LSGO Suite. Numerical experiments show that our proposal has broad prospects to solve LSOPs in noisy environments and can be easily extended to higher-dimensional problems.