论文标题

togethernet:通过动态增强学习一起桥接图像恢复和对象检测

TogetherNet: Bridging Image Restoration and Object Detection Together via Dynamic Enhancement Learning

论文作者

Wang, Yongzhen, Yan, Xuefeng, Zhang, Kaiwen, Gong, Lina, Xie, Haoran, Wang, Fu Lee, Wei, Mingqiang

论文摘要

诸如阴霾,雨水和雪等不利天气条件通常会损害被捕获的图像的质量,从而导致在正常图像上训练的检测网络在这些情况下概括了很差。在本文中,我们提出了一个有趣的问题 - 如果图像恢复和对象检测的结合可以提高在不利天气条件下尖端探测器的性能。为了回答它,我们提出了一个有效但统一的检测范式,该范式通过动态增强学习将这两个子任务桥接在一起,以在不利的天气条件下辨别对象,称为Togethernet。与现有的努力不同,这些努力将图像除去/der绘制作为预处理步骤,而是考虑了一个多任务联合学习问题。遵循联合学习方案,可以共享由恢复网络产生的清洁功能,以在检测网络中学习更好的对象检测,从而有助于TogEthERNET在不利天气条件下增强检测能力。除了联合学习体系结构外,我们还设计了一个新的动态变压器功能增强模块,以提高togethernet的功能提取和表示功能。对合成和现实世界数据集的广泛实验表明,我们的togethernet在定量和质量上都超过了最先进的检测方法。源代码可从https://github.com/yz-wang/togethernet获得。

Adverse weather conditions such as haze, rain, and snow often impair the quality of captured images, causing detection networks trained on normal images to generalize poorly in these scenarios. In this paper, we raise an intriguing question - if the combination of image restoration and object detection, can boost the performance of cutting-edge detectors in adverse weather conditions. To answer it, we propose an effective yet unified detection paradigm that bridges these two subtasks together via dynamic enhancement learning to discern objects in adverse weather conditions, called TogetherNet. Different from existing efforts that intuitively apply image dehazing/deraining as a pre-processing step, TogetherNet considers a multi-task joint learning problem. Following the joint learning scheme, clean features produced by the restoration network can be shared to learn better object detection in the detection network, thus helping TogetherNet enhance the detection capacity in adverse weather conditions. Besides the joint learning architecture, we design a new Dynamic Transformer Feature Enhancement module to improve the feature extraction and representation capabilities of TogetherNet. Extensive experiments on both synthetic and real-world datasets demonstrate that our TogetherNet outperforms the state-of-the-art detection approaches by a large margin both quantitatively and qualitatively. Source code is available at https://github.com/yz-wang/TogetherNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源