论文标题

负面选择方法,以支持Blackbox模型的输入约束的正式验证和验证

Negative Selection Approach to support Formal Verification and Validation of BlackBox Models' Input Constraints

论文作者

Nuhu, Abdul-Rauf, Gupta, Kishor Datta, Bedada, Wendwosen Bellete, Nabil, Mahmoud, Zeleke, Lydia Asrat, Homaifar, Abdollah, Tunstel, Edward

论文摘要

从分区的输入空间中生成不安全的子要求,以支持验证引导的测试案例以正式验证黑盒模型,这对研究人员来说是一个挑战性的问题。搜索空间的大小使详尽的搜索在计算上是不切实际的。本文调查了一种元效法方法,以在分区的输入空间中搜索不安全的候选子要求。我们提出了一种负选择算法(NSA),用于识别给定安全性质内候选人的不安全区域。 NSA算法的荟萃分析能力使得在验证这些区域的一部分时可以估算广阔的不安全区域。我们利用分区的输入空间的并行执行来产生安全区域。基于安全区域的先验知识的NSA用于识别候选不安全区域,然后使用Marabou框架来验证NSA结果。我们的初步实验和评估表明,该程序在用Marabou框架验证的高精度验证时发现候选人不安全的子裁定。

Generating unsafe sub-requirements from a partitioned input space to support verification-guided test cases for formal verification of black-box models is a challenging problem for researchers. The size of the search space makes exhaustive search computationally impractical. This paper investigates a meta-heuristic approach to search for unsafe candidate sub-requirements in partitioned input space. We present a Negative Selection Algorithm (NSA) for identifying the candidates' unsafe regions within given safety properties. The Meta-heuristic capability of the NSA algorithm made it possible to estimate vast unsafe regions while validating a subset of these regions. We utilize a parallel execution of partitioned input space to produce safe areas. The NSA based on the prior knowledge of the safe regions is used to identify candidate unsafe region areas and the Marabou framework is then used to validate the NSA results. Our preliminary experimentation and evaluation show that the procedure finds candidate unsafe sub-requirements when validated with the Marabou framework with high precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源