论文标题
数据驱动的皮肤病变分类深度监督
Data-Driven Deep Supervision for Skin Lesion Classification
论文作者
论文摘要
近年来,自动对色素,非色素和脱发的非胸膜皮肤病变的分类引起了很多关注。然而,皮肤纹理,病变形状,脱位对比度,照明条件等的成像变化。阻碍了鲁棒的特征提取,从而影响分类精度。在本文中,我们提出了一个新的深神经网络,该网络利用输入数据进行鲁棒特征提取。具体而言,我们分析了卷积网络的行为(视野),以找到深度监督的位置,以改善特征提取。为了实现这一目标,首先,我们执行激活映射以生成对象掩码,突出显示对分类输出生成最重要的输入区域。然后,选择层的有效接收场的网络层与对象掩模中的近似对象形状相匹配,以作为我们进行深度监督的焦点。利用三个黑色素瘤检测数据集和两个白癜风检测数据集上的不同类型的卷积特征提取器和分类器,我们验证了新方法的有效性。
Automatic classification of pigmented, non-pigmented, and depigmented non-melanocytic skin lesions have garnered lots of attention in recent years. However, imaging variations in skin texture, lesion shape, depigmentation contrast, lighting condition, etc. hinder robust feature extraction, affecting classification accuracy. In this paper, we propose a new deep neural network that exploits input data for robust feature extraction. Specifically, we analyze the convolutional network's behavior (field-of-view) to find the location of deep supervision for improved feature extraction. To achieve this, first, we perform activation mapping to generate an object mask, highlighting the input regions most critical for classification output generation. Then the network layer whose layer-wise effective receptive field matches the approximated object shape in the object mask is selected as our focus for deep supervision. Utilizing different types of convolutional feature extractors and classifiers on three melanoma detection datasets and two vitiligo detection datasets, we verify the effectiveness of our new method.