论文标题
使用Yolov5的稻叶疾病分类和检测
Rice Leaf Disease Classification and Detection Using YOLOv5
论文作者
论文摘要
全球一百多个国家的主食是大米(Oryza sativa)。大米的种植对于全球经济增长至关重要。但是,农业产业面临的主要问题是水稻疾病。农作物的质量和数量已经下降,这是主要原因。由于任何国家的农民对水稻疾病都没有太多了解,因此他们无法正确诊断稻叶疾病。这就是为什么他们不能适当照顾米叶的原因。结果,生产正在减少。从文献调查中,可以看出,Yolov5表现出更好的结果,与其他深度学习方法相比。由于对象检测技术的不断发展,在各种场景识别任务中使用了高精度和更好速度的Yolo家族算法来构建稻叶疾病监测系统。我们已经注释了1500个收集的数据集,并提出了基于Yolov5深学习的水稻疾病分类和检测方法。然后,我们训练并评估了Yolov5模型。模拟结果显示了本文提出的增强Yolov5网络的对象检测结果的改进。所需的识别精度,召回,MAP值和F1得分的水平分别为90 \%,67 \%,76 \%和81 \%\%被视为性能指标。
A staple food in more than a hundred nations worldwide is rice (Oryza sativa). The cultivation of rice is vital to global economic growth. However, the main issue facing the agricultural industry is rice leaf disease. The quality and quantity of the crops have declined, and this is the main cause. As farmers in any country do not have much knowledge about rice leaf disease, they cannot diagnose rice leaf disease properly. That's why they cannot take proper care of rice leaves. As a result, the production is decreasing. From literature survey, it has seen that YOLOv5 exhibit the better result compare to others deep learning method. As a result of the continual advancement of object detection technology, YOLO family algorithms, which have extraordinarily high precision and better speed have been used in various scene recognition tasks to build rice leaf disease monitoring systems. We have annotate 1500 collected data sets and propose a rice leaf disease classification and detection method based on YOLOv5 deep learning. We then trained and evaluated the YOLOv5 model. The simulation outcomes show improved object detection result for the augmented YOLOv5 network proposed in this article. The required levels of recognition precision, recall, mAP value, and F1 score are 90\%, 67\%, 76\%, and 81\% respectively are considered as performance metrics.