论文标题
代表性图像特征提取通过对比度学习预处理的胸部X射线报告生成
Representative Image Feature Extraction via Contrastive Learning Pretraining for Chest X-ray Report Generation
论文作者
论文摘要
医疗报告的生成是一项具有挑战性的任务,因为它耗时,需要经验丰富的放射科医生的专业知识。医疗报告生成的目的是准确捕获和描述图像发现。以前的作品在不同域中使用大型数据集预处理了他们的视觉编码神经网络,这些数据集无法在特定的医疗领域中学习一般的视觉表示。在这项工作中,我们提出了一个医学报告生成框架,该框架使用对比度学习方法来预处理视觉编码器,不需要其他元信息。此外,我们在对比学习框架中采用肺部分割作为增强方法。这种分割指导网络专注于编码肺部区域内的视觉特征。实验结果表明,所提出的框架可以在定量和定性上提高生成的医疗报告的性能和质量。
Medical report generation is a challenging task since it is time-consuming and requires expertise from experienced radiologists. The goal of medical report generation is to accurately capture and describe the image findings. Previous works pretrain their visual encoding neural networks with large datasets in different domains, which cannot learn general visual representation in the specific medical domain. In this work, we propose a medical report generation framework that uses a contrastive learning approach to pretrain the visual encoder and requires no additional meta information. In addition, we adopt lung segmentation as an augmentation method in the contrastive learning framework. This segmentation guides the network to focus on encoding the visual feature within the lung region. Experimental results show that the proposed framework improves the performance and the quality of the generated medical reports both quantitatively and qualitatively.