论文标题

SCL-RAI:基于跨度的对比度学习,并在NER中对未标记实体问题进行检索增强推理

SCL-RAI: Span-based Contrastive Learning with Retrieval Augmented Inference for Unlabeled Entity Problem in NER

论文作者

Si, Shuzheng, Zeng, Shuang, Lin, Jiaxing, Chang, Baobao

论文摘要

命名实体识别是定位和对文本中实体进行分类的任务。但是,NER数据集中未标记的实体问题严重阻碍了NER性能的改善。本文建议SCL-RAI解决这个问题。首先,我们通过基于跨度的对比学习来减少相同标签的跨度表示的距离,同时为不同的标签增加了跨度表示,从而缓解了实体之间的歧义并提高了模型对未标记的实体的鲁棒性。然后,我们提出检索增强推理,以减轻决策边界转移问题。我们的方法在两个现实世界数据集上大大优于先前的SOTA方法的F1分数4.21%和8.64%。

Named Entity Recognition is the task to locate and classify the entities in the text. However, Unlabeled Entity Problem in NER datasets seriously hinders the improvement of NER performance. This paper proposes SCL-RAI to cope with this problem. Firstly, we decrease the distance of span representations with the same label while increasing it for different ones via span-based contrastive learning, which relieves the ambiguity among entities and improves the robustness of the model over unlabeled entities. Then we propose retrieval augmented inference to mitigate the decision boundary shifting problem. Our method significantly outperforms the previous SOTA method by 4.21% and 8.64% F1-score on two real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源