论文标题

编舞编程的形式理论

A Formal Theory of Choreographic Programming

论文作者

Cruz-Filipe, Luís, Montesi, Fabrizio, Peressotti, Marco

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Choreographic programming is a paradigm for writing coordination plans for distributed systems from a global point of view, from which correct-by-construction decentralised implementations can be generated automatically. Theory of choreographies typically includes a number of complex results that are proved by structural induction. The high number of cases and the subtle details in some of these proofs has led to important errors being found in published works. In this work, we formalise the theory of a choreographic programming language in Coq. Our development includes the basic properties of this language, a proof of its Turing completeness, a compilation procedure to a process language, and an operational characterisation of the correctness of this procedure. Our formalisation experience illustrates the benefits of using a theorem prover: we get both an additional degree of confidence from the mechanised proof, and a significant simplification of the underlying theory. Our results offer a foundation for the future formal development of choreographic languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源