论文标题

一维非相互作用拓扑绝缘子与手性对称性

One-dimensional non-interacting topological insulators with chiral symmetry

论文作者

Matveeva, Polina, Hewitt, Tyler, Liu, Donghao, Reddy, Kethan, Gutman, Dmitri, Carr, Sam T.

论文摘要

我们在所有手性普遍性类别中构建了一维非相互作用拓扑绝缘子的微观模型。具体而言,我们从破坏了AIII类中的时间反转对称性的Su-Schrieffer-Heeger(SSH)模型的变形开始。然后,我们将此模型与其时间反向对应物相结合,以便在BDI,CII,DIII和CI类中构建模型。我们发现,单个链中的$ \ mathbb {z} $拓扑索引(绕组编号)仅定义为符号。这是由于注意到改变手性对称操作员的迹象会改变绕组数的符号。在每个链上选择手性对称算子的迹象的自由,可以独立地构建两个不同的手性对称算子,当链条弱耦合时 - 在一种情况下,总绕组数是由单个链条的绕组数的总和给出的,而在第二种情况下,第二种情况下,差异是差异。我们发现,属于$ \ mathbb {z} $ class,AIII,BDI和CII的手性模型在拓扑上是相等的,因此只要保留了手性对称性,它们就可以彼此绝热地变形。我们研究了构造模型中边缘状态的特性,并证明必须将受拓扑保护的边缘状态都定位在相同的sublattice上(在任何给定的边缘上)。我们还讨论了粒子 - 孔对称性在保护边缘状态的作用,并解释了它如何在$ \ mathbb {z} _2 $类中保护边缘状态,其中整数不变消失和单独的手性对称性不再保护边缘状态。我们讨论了结果在任意数量的耦合链的情况下的应用,为多链案例构建了可能的手性对称操作员,并简要讨论了对任何奇数尺寸的概括。

We construct microscopical models of one-dimensional non-interacting topological insulators in all of the chiral universality classes. Specifically, we start with a deformation of the Su-Schrieffer-Heeger (SSH) model that breaks time-reversal symmetry, which is in the AIII class. We then couple this model to its time-reversal counterpart in order to build models in the classes BDI, CII, DIII and CI. We find that the $\mathbb{Z}$ topological index (the winding number) in individual chains is defined only up to a sign. This comes from noticing that changing the sign of the chiral symmetry operator changes the sign of the winding number. The freedom to choose the sign of the chiral symmetry operator on each chain independently allows us to construct two distinct possible chiral symmetry operators when the chains are weakly coupled -- in one case, the total winding number is given by the sum of the winding number of individual chains while in the second case, the difference is taken. We find that the chiral models that belong to $\mathbb{Z}$ classes, AIII, BDI and CII are topologically equivalent, so they can be adiabatically deformed into one another so long as the chiral symmetry is preserved. We study the properties of the edge states in the constructed models and prove that topologically protected edge states must all be localised on the same sublattice (on any given edge). We also discuss the role of particle-hole symmetry on the protection of edge states and explain how it manages to protect edge states in $\mathbb{Z}_2$ classes, where the integer invariant vanishes and chiral symmetry alone does not protect the edge states anymore. We discuss applications of our results to the case of an arbitrary number of coupled chains, construct possible chiral symmetry operators for the multiple chain case, and briefly discuss the generalisation to any odd number of dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源