论文标题
在叶子上生长的文字
Text Growing on Leaf
论文作者
论文摘要
不规则形状的文本给场景文本检测带来了挑战(STD)。尽管现有的基于轮廓点序列的方法达到了可比的性能,但它们无法涵盖一些高度弯曲的色带样文本线条。它导致文本拟合能力和性病技术应用有限。考虑到上述问题,我们将文本几何特征和生物学结合起来,设计基于天然叶子的文本表示方法(LVT)。具体而言,发现叶子静脉是一个通常有针对性的图,可以很容易地覆盖各种几何形状。受其启发,我们将文本轮廓视为叶边缘,并通过主,侧向和薄静脉表示。我们进一步构建了一个基于LVT的检测框架,即Leftext。在文本重建阶段,Leftext模拟了叶片生长过程以重建文本轮廓。它在笛卡尔坐标中生长主要静脉,首先大致地定位文本。然后,沿极坐标的主要静脉生长方向产生侧静脉和细静脉。他们负责分别产生粗轮廓和精炼。考虑到侧静脉对主静脉的深度依赖性,提出了多方向平滑(MOS)以增强主静脉的鲁棒性,以确保可靠的检测结果。此外,我们提出了一个全球激励损失,以加速侧静脉和薄静脉的预测。消融实验表明,LVT能够精确描述任意形状的文本并验证MOS和全球激励损失的有效性。比较表明,Leftext优于MSRA-TD500,CTW1500,Total-Text和ICDAR2015数据集的现有最新方法(SOTA)方法。
Irregular-shaped texts bring challenges to Scene Text Detection (STD). Although existing contour point sequence-based approaches achieve comparable performances, they fail to cover some highly curved ribbon-like text lines. It leads to limited text fitting ability and STD technique application. Considering the above problem, we combine text geometric characteristics and bionics to design a natural leaf vein-based text representation method (LVT). Concretely, it is found that leaf vein is a generally directed graph, which can easily cover various geometries. Inspired by it, we treat text contour as leaf margin and represent it through main, lateral, and thin veins. We further construct a detection framework based on LVT, namely LeafText. In the text reconstruction stage, LeafText simulates the leaf growth process to rebuild text contour. It grows main vein in Cartesian coordinates to locate text roughly at first. Then, lateral and thin veins are generated along the main vein growth direction in polar coordinates. They are responsible for generating coarse contour and refining it, respectively. Considering the deep dependency of lateral and thin veins on main vein, the Multi-Oriented Smoother (MOS) is proposed to enhance the robustness of main vein to ensure a reliable detection result. Additionally, we propose a global incentive loss to accelerate the predictions of lateral and thin veins. Ablation experiments demonstrate LVT is able to depict arbitrary-shaped texts precisely and verify the effectiveness of MOS and global incentive loss. Comparisons show that LeafText is superior to existing state-of-the-art (SOTA) methods on MSRA-TD500, CTW1500, Total-Text, and ICDAR2015 datasets.