论文标题
SAGE:GPU执行的基于软件的证明
SAGE: Software-based Attestation for GPU Execution
论文作者
论文摘要
随着机器学习在关键和敏感域中的应用,使用加速器(例如GPU)在计算中对完整性和隐私的需求越来越大。不幸的是,目前对GPU的值得信赖的执行的支持非常有限 - 对加速器的值得信赖的执行特别具有挑战性,因为证明机制不应降低性能。尽管出现了对GPU的可信执行的硬件支持,但我们研究了纯粹的基于软件的GPU执行方法。仅软件方法提供了不同的优势:(1)补充基于硬件的方法,增强安全性,尤其是在硬件实现中的脆弱性降低安全性时,(2)在没有硬件支持的无需硬件支持的情况下操作GPU,并且(3)在没有依赖秘密的硬件中实现安全性,可以提取像历史记录一样提取的硬件。在这项工作中,我们提出了Sage,这是一种基于软件的证明机制,用于GPU执行。 Sage可以在安培体系结构的NVIDIA GPU上执行安全的代码执行(A100),提供代码完整性和保密性的属性,计算完整性以及数据完整性和保密性 - 所有这些都在GPU和CPU上运行的恶意代码。我们的评估表明,在没有特定的硬件支持的情况下,以可信赖的方式执行代码今天已经实用了SAGE。
With the application of machine learning to security-critical and sensitive domains, there is a growing need for integrity and privacy in computation using accelerators, such as GPUs. Unfortunately, the support for trusted execution on GPUs is currently very limited - trusted execution on accelerators is particularly challenging since the attestation mechanism should not reduce performance. Although hardware support for trusted execution on GPUs is emerging, we study purely software-based approaches for trusted GPU execution. A software-only approach offers distinct advantages: (1) complement hardware-based approaches, enhancing security especially when vulnerabilities in the hardware implementation degrade security, (2) operate on GPUs without hardware support for trusted execution, and (3) achieve security without reliance on secrets embedded in the hardware, which can be extracted as history has shown. In this work, we present SAGE, a software-based attestation mechanism for GPU execution. SAGE enables secure code execution on NVIDIA GPUs of the Ampere architecture (A100), providing properties of code integrity and secrecy, computation integrity, as well as data integrity and secrecy - all in the presence of malicious code running on the GPU and CPU. Our evaluation demonstrates that SAGE is already practical today for executing code in a trustworthy way on GPUs without specific hardware support.